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ABSTRACT 
This paper provides a detailed testing strategy for Software Product 
Lines (SPLs) that aims to balance the amount of variability offered 
with the cost of that variability. The strategy is a combination of 
feature modeling, combinatorial testing, and deployment-based 
testing, and it is designed to handle the unique challenges presented 
by testing SPLs, including the large number of possible feature 
interactions. 

The paper includes an experience report in the syngo SPL by 
Siemens Healthineers that had approximately 900 optional features 
and was deployed at about 35.000 end-customer installations. 
Testing this variability using conventional approaches was an 
immense challenge due to the vast number of required test cases 
and test configurations. As a result, the actual variability offered to 
customers was restricted to four configurations, and the time-to-
market of new features was limited to four releases per year. 

The goal of the project was to develop a testing strategy that would 
allow for the delivery of significantly more different configurations 
in a shorter time without significantly increasing testing effort and 
without sacrificing quality. To achieve this, the team applied a 
combination of different strategies: feature modeling, 
combinatorial testing, and deployment-based testing. Additionally, 
they built upon two ideas: restricting testing of feature interactions 
to those with any kind of dependency and those that should be 
included in an offering to customers. 

The results demonstrate that the testing strategy allows for ensuring 
the quality of significantly more deliverable configurations without 
a significant increase in testing effort. Moreover, the strategy 
enables the addition of new functionality while accurately 
identifying which test cases require adjustments or new 
development. This allows for significant reuse of existing test 

cases, contributing significantly to the time-to-market and the 
transition to monthly release cycles. 

Overall, this paper provides valuable insights and guidance for 
practitioners and researchers working with SPLs and facing the 
challenges of testing them. The presented strategy offers a 
promising approach to reducing the number of necessary cross-
module test cases in the context of software platform development, 
demonstrating the feasibility and potential benefits of this 
approach. 
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1 Introduction 
Software Product Lines (SPLs) are an effective approach for 
exploiting commonalities between products while providing 
variability to allow individuality of products. SPLs offer several 
advantages, such as customization, increased market reach, better 
resource utilization, improved time-to-market, increased 
flexibility, improved maintainability, and additional cost savings. 
However, variability also comes with a cost, including increased 
development and maintenance costs, testing costs, and complexity 
[15]. Finding a balance between the amount of variability offered 
and the cost of that variability is a crucial aspect of SPL 
development. 

Pohl et al. [14] have investigated how SPLs can help to achieve 
the challenges in software testing in general and emphasize the 
importance of testing all possible feature interactions, while 
acknowledging the contribution to model-based testing. 
Nevertheless, Metzger et al. [12] conclude that more research is 
required on product line quality assurance techniques despite the 
impressive progress made so far.  There is a significant amount of 
literature on how to determine meaningful test configurations, for 
example, using combinatorial testing techniques like t-wise testing 
(e.g. Baranov et al. [2], Ferreira et al. [4]). However, constructing 
concrete test cases for all possible feature interactions remains a 
challenge. 

This paper presents an experience report illustrating the 
difficulties of testing SPLs and how a combination of various 
strategies led to convincing results. Specifically, we focus on a SPL 
for a safety-critical system in the healthcare industry with 
approximately 900 optional features, which could potentially offer 
significant variability to customers. Testing this variability using 
conventional approaches is an immense challenge due to the vast 
number of required test cases. Consequently, the actual variability 
offered to customers was restricted to four (!) configurations. The 
high testing effort also limited the time-to-market of new features 
to four releases per year. The goal of the project was to develop a 
testing strategy that would allow for the delivery of significantly 
more different configurations in a shorter time without significantly 
increasing testing effort and without sacrificing quality. 

To achieve this, we applied a combination of different 
strategies: feature modeling, combinatorial testing, and 
deployment-based testing. Additionally, we introduced two new 
ideas: restricting testing of feature interactions to those with any 
kind of dependency and those that should be included in an offering 
to customers. We introduced the concept of "semantic 
dependencies," an extension of the feature model that includes 
additional dependencies beyond those required for determining 
buildability. We also introduced "customer-required sub-graphs," 
which represent the parts of the feature model potentially deployed 
to customers and subject to testing. 

In this paper, we provide a detailed evaluation of our testing 
strategy. Our results demonstrate that our strategy allows for 
ensuring the quality of significantly more deliverable 
configurations without a significant increase in testing effort. 
Moreover, our strategy enables the addition of new functionality 
while accurately identifying which test cases require adjustments 

or new development. This allows for significant reuse of existing 
test cases, contributing significantly to the time-to-market and the 
transition to monthly release cycles. 

The rest of the paper is organized as follows: in the next section, 
we present the initial situation of our project, the challenges faced 
by stakeholders, and the objectives we aimed to achieve. In section 
3, we introduce some background and related concepts relevant to 
our case. In Sections 4, we highlight the key elements of our 
approach, including the extension of the feature model and the 
construction of test cases that consider all restrictions in this model. 
Finally, in Section 5, we describe the phased approach we selected 
to meet our objectives in the project and we present the results 
which we achieved as of today. We conclude the paper by 
discussing the limitations of our approach, identifying areas for 
future work, and offering our final conclusions. 

2 Initial Situation 
In our project, we focused on a large software platform used within 
several product lines of medical devices. This platform had a 
significant number of variation points, as many features were 
optional and could be configured to be included or excluded in a 
deployment. About 900 features on requirement level were 
explicitly modeled in a feature model. This level of variability 
made testing a significant challenge. 

The software platform exhibited a significant number of 
intricate dependencies among the software's architectural building 
blocks, as well as between different features. Moreover, there were 
several dependencies on external software components, such as 
open-source and off-the-shelf products. Although these 
dependencies were captured in the feature model as far as 
buildability was concerned, there were instances where features 
had technical dependencies, such as shared access to database 
tables, that could be deployed independently. Consequently, the 
feature model did not reflect these dependencies, as they did not 
affect buildability. Nevertheless, these dependencies were well-
known to the development team and were verified through manual 
test cases. 

To control variability cost, modules were introduced. A module 
is a reusable, modular, cohesive and domain specific grouping of 
features. The development approach for the software platform is 
based on a staged testing approach, with intensive testing of 
features and feature dependencies on the module level, followed by 
intensive testing on the integration level, which we refer to as 
"Cross-Module Tests". Most module level tests could be 
automated, thus limiting variability cost on module level. Still, 
integration level "Cross-Module Tests" mostly were hardware-
bound and executed manually.  

To further control variability cost, deployment sets were 
introduced. A deployment set refers to a specific combination of 
modules (and thus features) that are included in a software 
deployment. While a deployment set always has the same modules 
as part of the physical deployment, some features were designed to 
be activated or deactivated through configuration. "Cross-Module 
Tests" were then performed for every deployment set.  
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The platform was deployed at approximately 35.000 end-
customer installations. While the technical prerequisites were in 
place to adapt the respective deployment individually to the 
customer's needs, the number of actual deployment sets built for 
testing purposes was still limited due to high quality assurance 
efforts. Before the project's start, the tests (and thus variability 
available to the customer) were limited to four fixed deployment 
sets. 

For each deployment set, manual test cases were created with 
the requirement of testing all “Cross Module” feature interactions 
between features which were included in the respective deployment 
set. A combination of two feature which was included in two 
different deployment sets was thus tested in two distinct test cases. 
These redundant tests of feature interactions resulted in an almost 
linear increase in test effort with the number of deployment sets, as 
shown in Figure 1. This made the creation of new deployment sets 
costly. 

 

 

Figure 1: Accumulated Test Effort per Deployment Set 

The test cases typically contained many features, as the team 
aimed to combine interacting features into test cases. Furthermore, 
the introduction of new features required all test cases that 
contained interacting features to be updated, even if only a few new 
features were introduced. As a result, many test cases for often all 
test configurations had to be adjusted. 

The large number of feature interactions presented a significant 
challenge for testing the software product line, making it infeasible 
to test all possible interactions. However, the challenge was not to 
test all feature interactions but rather to avoid updating all test cases 
whenever a change was made, even if many feature interactions 
remained unchanged. Additionally, the fixed deployment sets were 
inflexible in accommodating new functionality and adding 
additional deployment sets resulted in redundant testing of many 
feature interactions. 

This situation necessitated the development of a new testing 
strategy that could handle the large number of feature interactions 
and allow for more flexible testing of new functionality. 

2.1 Business Challenges 
The main business challenge was that increasing testing effort on 
integration level limits the variability that can be offered to the 
customer. Because of in this case high regulatory requirements for 
software quality, this severely limited the ability to introduce new 
features and products to the market. 

Shortening time to market was the second major challenge. 
While monthly releases were desirable, releases were limited to a 
quarterly basis, mainly due to the effort required to execute tests 
and adapt test cases to the new release content. 

A third challenge was connected to the size of installation 
packages for end customers. Physical deployment, such as via the 
internet, presented a challenge, particularly for software updates. 
On the one hand, update-related downtime of the product is 
expensive for the customer. On the other hand, support for many 
different software versions in the field added to maintenance cost 
of the SPL. 

Additionally, by limiting deployment sets, modules had to be 
included in the deployment that were not needed by the customer. 
Besides influencing the size of the deployment package, this 
resulted in license costs for off-the-shelf (OTS) software that had 
to be included in the deployment but was not required. 
Furthermore, there was an unnecessary potential security risk for 
every module, feature, or OTS software that was deployed but not 
required. 

2.2 Technical Challenges 
The technical challenges in this project were centered around 
ensuring that all cross-module dependencies in the software were 
covered by test cases, including both direct and indirect (transitive) 
dependencies. Each test case had to be executed with a specific 
deployment set that included and excluded features. Due to quality 
and regulatory requirements, each feature combination that was 
deployed to an end customer had to be tested beforehand. However, 
testing all technically possible feature combinations, including 
indirect dependencies, would have resulted in an excessively high 
number of feature combinations, making the testing process 
infeasible. 
 

2.3 Objectives  
The main objectives of this research were to reduce the increase in 
testing effort on integration level, when introducing additional 
variability or functionality. This addresses the main business 
challenge, i.e. to allow the SPL to support additional products and 
to increase the variability in possible software deployments for end 
customers and to improve time to market. Importantly, this has to 
be done without sacrificing on quality (in our case: covering all 
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feature interactions) despite the increasing number of to-be-tested 
feature combinations. 

Meeting this objective also acts as an enabler to addressing 
additional challenges, as briefly described in the outlook. 

3 Background 
Testing is an essential part of the SPL development process, but it 
presents a unique challenge due to the large number of possible 
feature interactions. The combinatorial explosion of feature 
interactions poses a major challenge for SPL testing, necessitating 
the use of efficient and effective testing strategies as pointed out 
e.g. by Cohen et al. [1] and Engström et al. [3]. One approach for 
reducing the number of required test configurations in large 
software systems is t-wise testing. Originally designed to reduce 
the number of test cases required to achieve a certain level of 
coverage, t-wise testing has been applied to SPLs as a means of 
reducing the number of required test configurations while still 
ensuring adequate coverage of feature interactions. T-wise testing 
aims to select a representative subset of test configurations that 
cover all possible combinations of t features (where t is a parameter 
specified by the tester). However, even with t-wise testing, the 
challenge of constructing concrete test cases for a given set of test 
configurations remains. This is particularly difficult for SPLs, 
where the large number of possible feature interactions can lead to 
a combinatorial explosion of test cases.  

Recent advancements in SPL testing focus on challenges such 
as managing variability and modeling dependencies. Techniques 
such as feature modeling (e.g. Kang et al. [10]) and combinatorial 
testing (e.g. Oster et al. [13]) have been proposed to manage the 
complexity of SPL testing. Novel approaches for test case 
generation and selection, such as model-based testing, product 
sampling, and evolutionary algorithms, have also been proposed to 
improve the efficiency and effectiveness of SPL testing (e.g. 
Ferreira et al. [5], Galindo et al. [7], Henard et al. [8], Jung et al. 
[9], Varshosaz et al. [16], Xiang et al. [17]). 

Our strategy adopted in the project combines three main 
techniques: feature modeling, combinatorial testing, and 
deployment-based testing. Feature modeling is a technique for 
representing the commonalities and variabilities of a SPL using a 
feature model. Combinatorial testing, like t-wise testing, is a 
technique that generates a set of test cases that cover all possible 
combinations of features. Deployment-based testing is a technique 
that focuses on testing only feature interactions that are delivered 
to customers. By combining these three techniques, we ensure that 
all feature interactions that are delivered to customers are 
thoroughly tested, while keeping the number of test cases to a 
minimum that is actually used. This approach is detailed in the 
following two sections. 

In this paper, we also adopt a perspective on key terminology in 
the realm of software product line engineering which places greater 
emphasis on the requirements aspect rather than the 
implementation aspect. By doing so, we aim to provide a fresh 
viewpoint that aligns more closely with the needs and challenges 
faced by practitioners in the field. To establish a common 

understanding and lay the groundwork for our discussion, we offer 
brief definitions of some essential terms, adapted to reflect our 
requirements-centric focus: 
• The Products in a Software Product Line (SPL) are described 

by the properties they have in common with each other and the 
variations that set them apart. The descriptions are in terms of 
the products’ features. 

• A Feature is a distinguishing characteristic of a product, 
usually visible to the customer or user of that product. An 
example is a capability that some products have but that others 
do not. 

• A Module is a reusable, modular, cohesive and domain 
specific grouping of features, and  

• An Architectural Building Block refers to technical 
components of the software, such as a Module and its lower-
level components, like classes. While features may be 
implemented by an Architectural Building Block, their 
implementation is often distributed across multiple blocks. 

• A Deployment Set refers to a specific combination of features 
that are included in a software deployment. It represents the 
features that are delivered to customers or internal users for 
use in their specific environment. 

• A Module Test tests a single module and all its features in 
isolation, while a Cross-Module Test tests the interactions 
between features in multiple modules. 

Our approach to these definitions diverges from the conventional 
usage found in the literature in some points, as we intentionally 
emphasize the role of requirements in shaping software product 
lines. This shift in perspective allows us to explore novel insights 
and opportunities for enhancing software development practices, 
ultimately contributing to the ongoing evolution of the field. 

4 Solution 

4.1 Testing strategy 
The testing strategy is a combination of extensions to the feature 
model, combinatorial testing, and deployment-based testing. The 
following steps were taken to implement this strategy: 
1. The feature model was extended to capture all pairwise feature 

interactions as dependencies. This ensured that all feature 
interactions were considered during testing. 

2. The feature model was further extended to specify which 
feature combinations could be delivered to customers. This 
allowed for more targeted testing of feature interactions that 
were relevant to customers. 

3. All feature combinations that could potentially interact in a 
customer deployment were identified, including transitive 
dependencies. 

4. A test case was developed for all possible combinations of two 
interacting features F and G, including   F & G, F & ¬G, ¬F 
&G, and ¬F & ¬G (given that individual combination is 
buildable and can be part of a customer deployment). 
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5. A minimal set of test configurations was identified to ensure 
that all identified feature combinations were tested in at least 
one configuration. 

6. Each test case was finally assigned to a test configuration. 
It is important to note, that step 6 happens after development of the 
test-cases (step 4). Thus, while writing the test cases, the possibility 
of configuration changes in the future has to be taken into account. 
In the next two sections, these steps will be explained in more 
detail. 

4.2 Modelling approach 
Conventional feature models are typically used to determine 

which concrete software configurations can be generated. We refer 
to this as “buildability” of a software configuration. Consequently, 
it is sufficient to include only those dependencies in the feature 
model which affect buildability. Our modelling approach extends 
the conventional feature model by also including feature 
interactions, which do not have an impact on buildability but 
nevertheless result in a feature interaction which must be tested, 
and we explicitly distinguish these dependencies from the former. 
We refer to these as "semantical" dependencies.  

Another element of our modeling approach involves modeling 
which feature combinations should be offered to customers. To 
systematically present these two extensions, we begin by first 
examining the feature model that was in place before the start of 
the project, see Figure 2. 
 

 

Figure 2: Original Feature Model 

This is a conventional feature model where the features of the 
software platform are modelled as a graph with features as nodes 
and edges for dependencies. The model includes the following 
elements: 

• Mandatory dependencies, which mark features that 
must be deployed together. These dependencies must be 
covered by test cases and limit test configurations to 

"buildable" configurations, meaning that mandatory 
dependencies must be obeyed. 

• Optional dependencies follow the usual semantics of 
conventional feature models. The feature and all its 
optional dependencies must be covered by test cases. In 
the context of this project, this means that even 
configurations in which optional features are absent must 
be covered by a test case. Thus, they contribute 
significantly to the increase in the number of test 
configurations and test cases. 

• Exclude relations, introduced to mark features that 
cannot be deployed together. This helps limit test cases 
as such feature combinations do not need to be tested. 

• OR dependencies, introduced to mark features that 
require at least one alternative from a set of other 
features, such as storage options. These dependencies are 
like optional dependencies, but do not require a test case 
where none of the dependent features is combined with 
the parent feature. 

 
In addition to these conventional dependency types, we have 
introduced a special kind of optional dependency called semantic 
dependencies. These dependencies are used to mark features that 
may not have a direct relation to each other, but whose functional 
behavior may be affected indirectly. A similar approach has been 
described by Lee et al. [2006] as “dynamic dependencies”. 
Semantic dependencies are usually used in our project for 
infrastructure features like job scheduling. For instance, the job 
view (feature A) must reflect the progress of a transfer job (feature 
B). In this scenario, the behavior of feature A is influenced by B 
only if B is utilized. As a result, the combination of A and B must 
be tested, however it is not required to test A without B if A is 
covered by other test cases. 

The modelling approach for the proposed solution further 
extends the feature model of the software platform to model 
customer deployments and to-be-supported feature combinations. 
This significantly restricts the possible product configurations, 
allowing only those combinations that are permissible according to 
the feature model during final product configuration.  

A concrete customer deployment can be modeled as a subgraph 
of the feature model, containing only the nodes associated with 
features included in the deployment. Our approach extends the 
feature graph by adding additional attributes on edge and node 
levels to mark "to-be-supported" subgraphs. These subgraphs, 
defined based on customer requirements, are called "Customer 
Required to-be-supported Subgraphs" (CRS) in our model and each 
CRS must be covered by test cases, whereas feature combinations 
which are not inside any CRS do not have to be tested, see Figure 
3. 
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Figure 3: Extended Feature Modell with Semantic Depen-
dencies and CRS 

It is worth mentioning that although not depicted in this figure for 
the sake of simplicity, CRSs can overlap, which means that 
different CRSs may share the same features. For instance, 
infrastructure features like job management are usually included in 
multiple CRSs. 

CRS play a crucial role in our solution strategy as they can 
significantly reduce the number of test cases if utilized effectively. 
A CRS still contains variability as the customer can choose any 
feature within the CRS, but it also restricts variability by limiting 
the choices to only those features that are part of the CRS. Finding 
the right balance between these two extremes is crucial: 
• A single CRS that covers the entire feature model would offer 

the customer maximum variability, but would result in the 
maximum number of test cases. 

• Creating a unique CRS for each customer that only includes 
their required features would result in a minimum number of 
test cases, but would also result in a huge number of CRS and 
long delivery cycles for each new customer.  

 
By understanding customer needs, it is possible to create CRS that 
are relatively small in terms of variability but meet the needs of 
most customer groups. Furthermore, as we will show in the next 
section, adding new CRS results in only a limited increase in 
additional test cases. 
 

4.3 Test Case Construction 
Our test case construction process is based on automated analysis 
of the feature model and combinatorial sampling but has some 
unique features. Firstly, we take into account any level of 
interaction between features by including all feature combinations 
that are directly or indirectly linked through dependencies. 
Additionally, we only consider combinations of features that 

appear in the CRSs, ensuring that only configurations actually used 
are tested. To achieve this, our approach involves several steps: 
1. Computing all Customer Required to-be-supported 

Subgraphs (CRS)s: First the CRSs and all contained features 
are determined from the feature model. 

2. Computing the Test Case Requirements (TCRs): These 
need to adhere to the feature model (“buildability”) and take 
into account all dependencies between features. More over, 
only those TCRs that are part of a CRS are considered. The 
exact process is explained below. 

3. Filtering the TCRs: The input contains a list of TCRs to be 
ignored based on knowledge of domain experts. These are 
removed from the following steps. 

4. Computing minimal amount of Quality Assurance Sets 
(QAS): These are software configurations which together 
contain all TCRs in the sense that all features in the TCR are 
also included in the configuration and all features which are 
explicitly marked as to be excluded in the TCR are not 
included in the configuration. In this case study, we aim to 
minimize the number of QASs required, in addition to 
covering all TCRs as setting up each QAS incurs significant 
costs. 

 
The computation of the TCRs is based on the specific types of 
dependencies which exist in the feature model. 
1. Firstly, we identify the "base features", which are those 

directly required by a CRS. 
2. We then compute the connectivity component for each base 

feature: Starting from each base feature we follow all 
mandatory and optional dependencies to get the set of relevant 
features for this base feature. 

3. We then compute all “buildable” combinations of these 
features using a SAT-solver. Buildable combinations must 
adhere to the dependencies in the feature model and appear in 
a CRS. 

4. Next, we reduce these configurations by eliminating any 
features that are only connected to the base feature through 
other features that only appear negatively in the configuration. 

5. Finally, we convert the resulting configurations into Boolean 
formulas to obtain the Test Case Requirements (TCRs), which 
form the basis for our manual test case construction. 

 
We can illustrate the above steps using the following graph as an 
example: 
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Figure 4: TCR Computation Example 

 
1. Base Features: Here the only base feature is GUI, as it is the 

only feature directly required by the CRS. 
2. Connectivity Components: GUI leads to JobViewer and 

UserMgmt, while JobViewer leads to DataBase and 
UserMgmt leads to MFA. Thus, the connectivity component 
contains those five features and the connecting dependencies. 
The set of relevant features is thus: 
{ GUI, JobViewer, UserMgmt, DataBase, MFA } 

3. Buildable combinations: The only relevant dependencies for 
buildability are the mandatory ones between GUI and 
JobViewer/UserMgmt. Therefore, there are no buildability 
restrictions for DataBase and MFA. The buildable 
combinations are thus: 
• GUI & JobViewer & UserMgmt & DataBase & MFA 
• GUI & JobViewer & UserMgmt & DataBase & -MFA 
• GUI & JobViewer & UserMgmt & -DataBase & MFA 
• GUI & JobViewer & UserMgmt & -DataBase & -MFA 

 Since appearance in a CRS is also relevant, we need to 
compute the configuration, which is the smallest buildable 
configuration containing all needed features. Thus, the 
configuration contains GUI, JobViewer and UserMgmt since 
the dependencies to DataBase and MFA are not relevant for 
buildability, as they are optional. The only buildable 
combination that can appear in a CRS is then: 
• GUI & JobViewer & UserMgmt & -DataBase & -MFA 

4. Configuration reduction: Since semantic dependencies are 
only interested in positive targets, -DataBase can be removed. 
-MFA is relevant though, as it appears due to an optional 
dependency. 

5. Boolean formulas: We already expressed the configurations as 
formulas, thus the resulting TCR is: 
• GUI & JobViewer & UserMgmt & -MFA 

 

5 Achievements and Future Work 

5.1 Solution Roadmap 
The implementation of our proposed solution strategy requires 
several steps to be taken. 
• Implement tooling to define and maintain the feature model 

with the extensions outlined in Section 4.2. 
• Implement tooling to specify CRSs and integrate CRSs into 

the current configuration process and tooling. 
• Implement the calculation of TCRs and QASs. 
• Migrate current test cases and deployment sets used for testing 

to reflect the computed TCRs and QAS. 
 
This change affects a wide range of stakeholders in the 
organization: software and product engineers responsible for the 
feature model,  testing managers and testing engineers responsible 
for defining the final test cases based on TCRs, devops engineers 
responsible for building deployment sets (testing and customer 
related), product managers responsible for defining CRSs, sales 
representative responsible for configuring customer deployments, 
and maintenance staff responsible for supporting deployed 
software configurations. Due to its impact, a staged approach is 
required. Our proposed solution roadmap includes the following 
phases: 
• Phase 1 - Concept Validation: This phase involves validating 

the concept of CRS by using the current deployment sets used 
for testing. The feature model tooling is updated to 
accommodate the new extensions and the TCR computation is 
implemented. A pilot set of features is modeled, and 
respective test cases are migrated based on the resulting TCRs. 

• Phase 2 - Feature Support for a New Customer Group: 
This phase involves extending the feature model with new 
features required to support a new customer group. TCRs, 
QASs, and customer-related deployment sets are constructed 
based on the new approach. 

• Phase 3 - Configuration and Build Process Adherence to 
Extended Feature Model: This phase involves updating the 
tooling used for configuring customer-related deployment sets 
with additional validation checks to ensure that only 
configurations that comply with the extended feature model 
are deployed. This includes tooling to specify new CRSs and 
evaluate the impact on testing efforts by computing metrics 
such as the number of additional TCRs required. The tooling 
for building deployment sets based on CRSs is also updated. 

• Phase 4 - Full Rollout: This phase involves fully 
implementing the new approach across all business lines, 
including sales. 

 

5.2 Implementation Status and Future Work 
At the beginning of the project, the feature model was primarily 
used to model the variability of the software platform. As of the 
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writing of this paper, phases 1 and 2 of the solution roadmap have 
been successfully implemented. This includes an automatic 
analysis of the feature model to determine TCRs and QASs. The 
new testing strategy has been applied to the first deployment set 
and an additional 11 offerings without a significant increase in 
cross-module testing efforts. Phase 3 has been piloted already and 
requires future work to complete. As described, this also includes 
the use of the feature model for product configuration. 
 

5.3 Results as of today 
Figure 5 shows how the number of TCRs changes when features 
are added. Each data point corresponds to a CRS that is to be 
offered on the market, where the first data point belongs to the first 
of the four originally migrated deployment sets, and each 
subsequent data point corresponds to an additional offering that 
was either not available on the market before or had to be tested 
manually. 
 

 

 

Figure 5: Number of Computed TCRs when Adding Features 

The following observations can be made: 
• Most CRSs do not result in a significant increase in the 

number of required TCRs. For example, CRS 4 introduces 17 
new features, but only results in 2 additional TCRs. This is 
because the new features either have very few dependencies 
on other CRSs or because dependencies only exist between 
features that are already part of the previous CRSs, and thus, 
are already covered by existing TCRs. It is a first success of 
our approach that this redundancy is automatically detected. 

• Between CRS 5 and 6, only two features are added (581 
instead of 579), but they have several dependencies on already 
existing features. This results in an increase in the required 
TCRs from 331 to 444, or by 34%. This increase is significant 
but makes sense in the context of expected feature 
interactions. It demonstrates how transparency about the 

degree of cross-module interactions can be gained through a 
gradual addition of new features. 

 
In conclusion, the proposed solution strategy demonstrates a 
promising approach to reducing the number of necessary cross-
module test cases in the context of software platform development. 
The successful implementation of the first two phases of our 
solution roadmap, as well as the promising results shown in the 
presented graph, demonstrate the feasibility and potential benefits 
of our approach. 

6 Limitations 
We have presented a strategy for balancing the amount of 
variability offered in software product lines with the cost of that 
variability, particularly in the area of testing. To effectively 
implement this strategy, a thorough understanding of customer 
needs and the value that certain variability offers to customers is 
necessary. This knowledge is crucial for defining Customer 
Required to-be-supported Subgraphs (CRS), which play a key role 
in limiting the number of test cases. 

However, in many situations, this level of detail in customer 
needs is lacking. Further research is needed to find ways to 
construct CRS based on the feature model itself, for example by 
identifying strongly connected subgraphs, and with limited 
information about customer needs, such as features valued most by 
customers. In addition, further research is required to identify 
metrics to assess the value of CRS for customers, as well as the 
costs of the additional variability introduced by them. 

The expressiveness of the feature model plays a critical role in 
reducing the number of test cases in software product line testing. 
Our proposed solution has incorporated simple extensions to limit 
variability in the feature model. However, further research is 
necessary to explore the potential of creating even more expressive 
feature models that are intuitive and manageable for software 
engineers. 

Additionally, there is potential for further extension of the 
proposed solution, including the following: 

• Deriving technical dependencies from code or IDE 
analysis tools. 

• Supporting different optimization boundary conditions 
for the generation of Test Case Requirements (TCRs) and 
Quality Assurance Sets (QASs), such as a minimal 
number of QASs or minimal changes to TCRs and QASs 
compared to an earlier version of the Software Product 
Line. 

 
These limitations should be considered when evaluating the 
proposed solution and its potential for use in practical applications. 

7 Conclusion and Outlook 
This paper has discussed the challenges of testing SPLs and 
proposed a new approach to address these challenges. Cost of 
quality which is incurred by variability significantly adds to the 
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total cost of variability which limits to use of SPLs. Thus, ways are 
needed to limit the number of test cases (for existing and newly 
introduced feature interactions) without sacrificing quality and 
important variability required by customers. 
The main contributions of the paper to this research area are: 
• We propose to utilize the feature model for not only capturing 

variability but also for limiting it. We have outlined two 
methods for this purpose: (1) using subgraphs of the feature 
model to represent customer needs, and (2) introducing 
additional dependency types to restrict unnecessary feature 
combinations. This enhances the feature model and reduces 
the number of necessary test cases by focusing only on 
relevant feature interactions. 

• The proposed approach combines combinatorial testing and 
deployment-based testing and prioritizes test cases based on 
risk or impact to the system using feature-use analysis. 

 
In conclusion, the proposed approach provides a way to reduce the 
number of test cases in SPLs without sacrificing quality and 
important variability. Further research and implementation of this 
approach could lead to significant benefits for the SPL community, 
including increased variability in software deployments and 
improved quality assurance. 

Galindo et al. [2018] describe in which areas the automatic 
analysis of feature models can be applied. This experience report 
demonstrates how more and more benefits can be derived from a 
feature model during the course of our solution roadmap while 
extending the application of automated feature model analysis. 

As an outlook, the proposed approach can act as an enabler for 
several business challenges. More variability in the SPL allows for 
more customer-specific deployments, thus reducing OTS-costs and 
potential security risks introduced by not deeded modules. 
Additionally, customer-specific installation packages can be 
smaller and faster to update. This can help to reduce the number of 
old software versions, that have to be supported in the field. Finally, 
introducing additional variability is a prerequisite for feature-
subscription based pricing models.  
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