
Balancing Variability and Costs in Software Product Lines:
An Experience Report in Safety-Critical Systems

Udo Knop
 bluesolve GmbH

 München Germany
 udo.knop@bluesolve.tech

Peter Hofman
 Siemens Healthineers
 Forchheim Germany

 peter.hofman@siemens-healthineers.com

Michael Mihatsch
 bluesolve GmbH

 München Germany
 michael.mihatsch@bluesolve.tech

Martin Siegmund
 bluesolve GmbH

 München Germany
 martin.siegmund@bluesolve.tech

ABSTRACT
This paper provides a detailed testing strategy for Software Product
Lines (SPLs) that aims to balance the amount of variability offered
with the cost of that variability. The strategy is a combination of
feature modeling, combinatorial testing, and deployment-based
testing, and it is designed to handle the unique challenges presented
by testing SPLs, including the large number of possible feature
interactions.

The paper includes an experience report in the syngo SPL by
Siemens Healthineers that had approximately 900 optional features
and was deployed at about 35.000 end-customer installations.
Testing this variability using conventional approaches was an
immense challenge due to the vast number of required test cases
and test configurations. As a result, the actual variability offered to
customers was restricted to four configurations, and the time-to-
market of new features was limited to four releases per year.

The goal of the project was to develop a testing strategy that would
allow for the delivery of significantly more different configurations
in a shorter time without significantly increasing testing effort and
without sacrificing quality. To achieve this, the team applied a
combination of different strategies: feature modeling,
combinatorial testing, and deployment-based testing. Additionally,
they built upon two ideas: restricting testing of feature interactions
to those with any kind of dependency and those that should be
included in an offering to customers.

The results demonstrate that the testing strategy allows for ensuring
the quality of significantly more deliverable configurations without
a significant increase in testing effort. Moreover, the strategy
enables the addition of new functionality while accurately
identifying which test cases require adjustments or new
development. This allows for significant reuse of existing test

cases, contributing significantly to the time-to-market and the
transition to monthly release cycles.

Overall, this paper provides valuable insights and guidance for
practitioners and researchers working with SPLs and facing the
challenges of testing them. The presented strategy offers a
promising approach to reducing the number of necessary cross-
module test cases in the context of software platform development,
demonstrating the feasibility and potential benefits of this
approach.

CCS CONCEPTS
• Software and its engineering ® Software creation and
management ® Software verification and validation ® Empirical
software validation

• Software and its engineering ® Software organization and
properties ® Software system structures ® Software system
models ® Feature interaction

KEYWORDS
Software product Line, feature model, deployment-based testing,
test case construction

ACM Reference format:

Udo Knop, Peter Hofman, Michael Mihatsch, and Martin Siegmund. 2023.
Balancing Variability and Costs in Software Product Lines: An Experience
Report in Safety-Critical Systems. In Proceedings of SPLC conference
(SPLC’23), August 28 – September 1, 2023, Tokyo, Japan. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/1234567890

Don Kilian (SHS DI MSC C D&A)
Comment
Please use "Syngo" as the correct product line naming

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan U. Knop et al.

1 Introduction
Software Product Lines (SPLs) are an effective approach for
exploiting commonalities between products while providing
variability to allow individuality of products. SPLs offer several
advantages, such as customization, increased market reach, better
resource utilization, improved time-to-market, increased
flexibility, improved maintainability, and additional cost savings.
However, variability also comes with a cost, including increased
development and maintenance costs, testing costs, and complexity
[15]. Finding a balance between the amount of variability offered
and the cost of that variability is a crucial aspect of SPL
development.

Pohl et al. [14] have investigated how SPLs can help to achieve
the challenges in software testing in general and emphasize the
importance of testing all possible feature interactions, while
acknowledging the contribution to model-based testing.
Nevertheless, Metzger et al. [12] conclude that more research is
required on product line quality assurance techniques despite the
impressive progress made so far. There is a significant amount of
literature on how to determine meaningful test configurations, for
example, using combinatorial testing techniques like t-wise testing
(e.g. Baranov et al. [2], Ferreira et al. [4]). However, constructing
concrete test cases for all possible feature interactions remains a
challenge.

This paper presents an experience report illustrating the
difficulties of testing SPLs and how a combination of various
strategies led to convincing results. Specifically, we focus on a SPL
for a safety-critical system in the healthcare industry with
approximately 900 optional features, which could potentially offer
significant variability to customers. Testing this variability using
conventional approaches is an immense challenge due to the vast
number of required test cases. Consequently, the actual variability
offered to customers was restricted to four (!) configurations. The
high testing effort also limited the time-to-market of new features
to four releases per year. The goal of the project was to develop a
testing strategy that would allow for the delivery of significantly
more different configurations in a shorter time without significantly
increasing testing effort and without sacrificing quality.

To achieve this, we applied a combination of different
strategies: feature modeling, combinatorial testing, and
deployment-based testing. Additionally, we introduced two new
ideas: restricting testing of feature interactions to those with any
kind of dependency and those that should be included in an offering
to customers. We introduced the concept of "semantic
dependencies," an extension of the feature model that includes
additional dependencies beyond those required for determining
buildability. We also introduced "customer-required sub-graphs,"
which represent the parts of the feature model potentially deployed
to customers and subject to testing.

In this paper, we provide a detailed evaluation of our testing
strategy. Our results demonstrate that our strategy allows for
ensuring the quality of significantly more deliverable
configurations without a significant increase in testing effort.
Moreover, our strategy enables the addition of new functionality
while accurately identifying which test cases require adjustments

or new development. This allows for significant reuse of existing
test cases, contributing significantly to the time-to-market and the
transition to monthly release cycles.

The rest of the paper is organized as follows: in the next section,
we present the initial situation of our project, the challenges faced
by stakeholders, and the objectives we aimed to achieve. In section
3, we introduce some background and related concepts relevant to
our case. In Sections 4, we highlight the key elements of our
approach, including the extension of the feature model and the
construction of test cases that consider all restrictions in this model.
Finally, in Section 5, we describe the phased approach we selected
to meet our objectives in the project and we present the results
which we achieved as of today. We conclude the paper by
discussing the limitations of our approach, identifying areas for
future work, and offering our final conclusions.

2 Initial Situation
In our project, we focused on a large software platform used within
several product lines of medical devices. This platform had a
significant number of variation points, as many features were
optional and could be configured to be included or excluded in a
deployment. About 900 features on requirement level were
explicitly modeled in a feature model. This level of variability
made testing a significant challenge.

The software platform exhibited a significant number of
intricate dependencies among the software's architectural building
blocks, as well as between different features. Moreover, there were
several dependencies on external software components, such as
open-source and off-the-shelf products. Although these
dependencies were captured in the feature model as far as
buildability was concerned, there were instances where features
had technical dependencies, such as shared access to database
tables, that could be deployed independently. Consequently, the
feature model did not reflect these dependencies, as they did not
affect buildability. Nevertheless, these dependencies were well-
known to the development team and were verified through manual
test cases.

To control variability cost, modules were introduced. A module
is a reusable, modular, cohesive and domain specific grouping of
features. The development approach for the software platform is
based on a staged testing approach, with intensive testing of
features and feature dependencies on the module level, followed by
intensive testing on the integration level, which we refer to as
"Cross-Module Tests". Most module level tests could be
automated, thus limiting variability cost on module level. Still,
integration level "Cross-Module Tests" mostly were hardware-
bound and executed manually.

To further control variability cost, deployment sets were
introduced. A deployment set refers to a specific combination of
modules (and thus features) that are included in a software
deployment. While a deployment set always has the same modules
as part of the physical deployment, some features were designed to
be activated or deactivated through configuration. "Cross-Module
Tests" were then performed for every deployment set.

Balancing Variability and Costs in Software Product Lines:
An Experience Report in Safety-Critical Systems SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

The platform was deployed at approximately 35.000 end-
customer installations. While the technical prerequisites were in
place to adapt the respective deployment individually to the
customer's needs, the number of actual deployment sets built for
testing purposes was still limited due to high quality assurance
efforts. Before the project's start, the tests (and thus variability
available to the customer) were limited to four fixed deployment
sets.

For each deployment set, manual test cases were created with
the requirement of testing all “Cross Module” feature interactions
between features which were included in the respective deployment
set. A combination of two feature which was included in two
different deployment sets was thus tested in two distinct test cases.
These redundant tests of feature interactions resulted in an almost
linear increase in test effort with the number of deployment sets, as
shown in Figure 1. This made the creation of new deployment sets
costly.

Figure 1: Accumulated Test Effort per Deployment Set

The test cases typically contained many features, as the team
aimed to combine interacting features into test cases. Furthermore,
the introduction of new features required all test cases that
contained interacting features to be updated, even if only a few new
features were introduced. As a result, many test cases for often all
test configurations had to be adjusted.

The large number of feature interactions presented a significant
challenge for testing the software product line, making it infeasible
to test all possible interactions. However, the challenge was not to
test all feature interactions but rather to avoid updating all test cases
whenever a change was made, even if many feature interactions
remained unchanged. Additionally, the fixed deployment sets were
inflexible in accommodating new functionality and adding
additional deployment sets resulted in redundant testing of many
feature interactions.

This situation necessitated the development of a new testing
strategy that could handle the large number of feature interactions
and allow for more flexible testing of new functionality.

2.1 Business Challenges
The main business challenge was that increasing testing effort on
integration level limits the variability that can be offered to the
customer. Because of in this case high regulatory requirements for
software quality, this severely limited the ability to introduce new
features and products to the market.

Shortening time to market was the second major challenge.
While monthly releases were desirable, releases were limited to a
quarterly basis, mainly due to the effort required to execute tests
and adapt test cases to the new release content.

A third challenge was connected to the size of installation
packages for end customers. Physical deployment, such as via the
internet, presented a challenge, particularly for software updates.
On the one hand, update-related downtime of the product is
expensive for the customer. On the other hand, support for many
different software versions in the field added to maintenance cost
of the SPL.

Additionally, by limiting deployment sets, modules had to be
included in the deployment that were not needed by the customer.
Besides influencing the size of the deployment package, this
resulted in license costs for off-the-shelf (OTS) software that had
to be included in the deployment but was not required.
Furthermore, there was an unnecessary potential security risk for
every module, feature, or OTS software that was deployed but not
required.

2.2 Technical Challenges
The technical challenges in this project were centered around
ensuring that all cross-module dependencies in the software were
covered by test cases, including both direct and indirect (transitive)
dependencies. Each test case had to be executed with a specific
deployment set that included and excluded features. Due to quality
and regulatory requirements, each feature combination that was
deployed to an end customer had to be tested beforehand. However,
testing all technically possible feature combinations, including
indirect dependencies, would have resulted in an excessively high
number of feature combinations, making the testing process
infeasible.

2.3 Objectives
The main objectives of this research were to reduce the increase in
testing effort on integration level, when introducing additional
variability or functionality. This addresses the main business
challenge, i.e. to allow the SPL to support additional products and
to increase the variability in possible software deployments for end
customers and to improve time to market. Importantly, this has to
be done without sacrificing on quality (in our case: covering all

0

50

100

150

200

250

300

350

400

450

1 2 3 4

Ac
cu

m
ul

at
ed

 C
ro

ss
-M

od
ul

e
Te

st
ei

ng
 E

ffo
rt

 p
er

 R
el

ea
se

 (H
ou

rs
)

Deployment Set

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan U. Knop et al.

feature interactions) despite the increasing number of to-be-tested
feature combinations.

Meeting this objective also acts as an enabler to addressing
additional challenges, as briefly described in the outlook.

3 Background
Testing is an essential part of the SPL development process, but it
presents a unique challenge due to the large number of possible
feature interactions. The combinatorial explosion of feature
interactions poses a major challenge for SPL testing, necessitating
the use of efficient and effective testing strategies as pointed out
e.g. by Cohen et al. [1] and Engström et al. [3]. One approach for
reducing the number of required test configurations in large
software systems is t-wise testing. Originally designed to reduce
the number of test cases required to achieve a certain level of
coverage, t-wise testing has been applied to SPLs as a means of
reducing the number of required test configurations while still
ensuring adequate coverage of feature interactions. T-wise testing
aims to select a representative subset of test configurations that
cover all possible combinations of t features (where t is a parameter
specified by the tester). However, even with t-wise testing, the
challenge of constructing concrete test cases for a given set of test
configurations remains. This is particularly difficult for SPLs,
where the large number of possible feature interactions can lead to
a combinatorial explosion of test cases.

Recent advancements in SPL testing focus on challenges such
as managing variability and modeling dependencies. Techniques
such as feature modeling (e.g. Kang et al. [10]) and combinatorial
testing (e.g. Oster et al. [13]) have been proposed to manage the
complexity of SPL testing. Novel approaches for test case
generation and selection, such as model-based testing, product
sampling, and evolutionary algorithms, have also been proposed to
improve the efficiency and effectiveness of SPL testing (e.g.
Ferreira et al. [5], Galindo et al. [7], Henard et al. [8], Jung et al.
[9], Varshosaz et al. [16], Xiang et al. [17]).

Our strategy adopted in the project combines three main
techniques: feature modeling, combinatorial testing, and
deployment-based testing. Feature modeling is a technique for
representing the commonalities and variabilities of a SPL using a
feature model. Combinatorial testing, like t-wise testing, is a
technique that generates a set of test cases that cover all possible
combinations of features. Deployment-based testing is a technique
that focuses on testing only feature interactions that are delivered
to customers. By combining these three techniques, we ensure that
all feature interactions that are delivered to customers are
thoroughly tested, while keeping the number of test cases to a
minimum that is actually used. This approach is detailed in the
following two sections.

In this paper, we also adopt a perspective on key terminology in
the realm of software product line engineering which places greater
emphasis on the requirements aspect rather than the
implementation aspect. By doing so, we aim to provide a fresh
viewpoint that aligns more closely with the needs and challenges
faced by practitioners in the field. To establish a common

understanding and lay the groundwork for our discussion, we offer
brief definitions of some essential terms, adapted to reflect our
requirements-centric focus:
• The Products in a Software Product Line (SPL) are described

by the properties they have in common with each other and the
variations that set them apart. The descriptions are in terms of
the products’ features.

• A Feature is a distinguishing characteristic of a product,
usually visible to the customer or user of that product. An
example is a capability that some products have but that others
do not.

• A Module is a reusable, modular, cohesive and domain
specific grouping of features, and

• An Architectural Building Block refers to technical
components of the software, such as a Module and its lower-
level components, like classes. While features may be
implemented by an Architectural Building Block, their
implementation is often distributed across multiple blocks.

• A Deployment Set refers to a specific combination of features
that are included in a software deployment. It represents the
features that are delivered to customers or internal users for
use in their specific environment.

• A Module Test tests a single module and all its features in
isolation, while a Cross-Module Test tests the interactions
between features in multiple modules.

Our approach to these definitions diverges from the conventional
usage found in the literature in some points, as we intentionally
emphasize the role of requirements in shaping software product
lines. This shift in perspective allows us to explore novel insights
and opportunities for enhancing software development practices,
ultimately contributing to the ongoing evolution of the field.

4 Solution

4.1 Testing strategy
The testing strategy is a combination of extensions to the feature
model, combinatorial testing, and deployment-based testing. The
following steps were taken to implement this strategy:
1. The feature model was extended to capture all pairwise feature

interactions as dependencies. This ensured that all feature
interactions were considered during testing.

2. The feature model was further extended to specify which
feature combinations could be delivered to customers. This
allowed for more targeted testing of feature interactions that
were relevant to customers.

3. All feature combinations that could potentially interact in a
customer deployment were identified, including transitive
dependencies.

4. A test case was developed for all possible combinations of two
interacting features F and G, including F & G, F & ¬G, ¬F
&G, and ¬F & ¬G (given that individual combination is
buildable and can be part of a customer deployment).

Balancing Variability and Costs in Software Product Lines:
An Experience Report in Safety-Critical Systems SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

5. A minimal set of test configurations was identified to ensure
that all identified feature combinations were tested in at least
one configuration.

6. Each test case was finally assigned to a test configuration.
It is important to note, that step 6 happens after development of the
test-cases (step 4). Thus, while writing the test cases, the possibility
of configuration changes in the future has to be taken into account.
In the next two sections, these steps will be explained in more
detail.

4.2 Modelling approach
Conventional feature models are typically used to determine

which concrete software configurations can be generated. We refer
to this as “buildability” of a software configuration. Consequently,
it is sufficient to include only those dependencies in the feature
model which affect buildability. Our modelling approach extends
the conventional feature model by also including feature
interactions, which do not have an impact on buildability but
nevertheless result in a feature interaction which must be tested,
and we explicitly distinguish these dependencies from the former.
We refer to these as "semantical" dependencies.

Another element of our modeling approach involves modeling
which feature combinations should be offered to customers. To
systematically present these two extensions, we begin by first
examining the feature model that was in place before the start of
the project, see Figure 2.

Figure 2: Original Feature Model

This is a conventional feature model where the features of the
software platform are modelled as a graph with features as nodes
and edges for dependencies. The model includes the following
elements:

• Mandatory dependencies, which mark features that
must be deployed together. These dependencies must be
covered by test cases and limit test configurations to

"buildable" configurations, meaning that mandatory
dependencies must be obeyed.

• Optional dependencies follow the usual semantics of
conventional feature models. The feature and all its
optional dependencies must be covered by test cases. In
the context of this project, this means that even
configurations in which optional features are absent must
be covered by a test case. Thus, they contribute
significantly to the increase in the number of test
configurations and test cases.

• Exclude relations, introduced to mark features that
cannot be deployed together. This helps limit test cases
as such feature combinations do not need to be tested.

• OR dependencies, introduced to mark features that
require at least one alternative from a set of other
features, such as storage options. These dependencies are
like optional dependencies, but do not require a test case
where none of the dependent features is combined with
the parent feature.

In addition to these conventional dependency types, we have
introduced a special kind of optional dependency called semantic
dependencies. These dependencies are used to mark features that
may not have a direct relation to each other, but whose functional
behavior may be affected indirectly. A similar approach has been
described by Lee et al. [2006] as “dynamic dependencies”.
Semantic dependencies are usually used in our project for
infrastructure features like job scheduling. For instance, the job
view (feature A) must reflect the progress of a transfer job (feature
B). In this scenario, the behavior of feature A is influenced by B
only if B is utilized. As a result, the combination of A and B must
be tested, however it is not required to test A without B if A is
covered by other test cases.

The modelling approach for the proposed solution further
extends the feature model of the software platform to model
customer deployments and to-be-supported feature combinations.
This significantly restricts the possible product configurations,
allowing only those combinations that are permissible according to
the feature model during final product configuration.

A concrete customer deployment can be modeled as a subgraph
of the feature model, containing only the nodes associated with
features included in the deployment. Our approach extends the
feature graph by adding additional attributes on edge and node
levels to mark "to-be-supported" subgraphs. These subgraphs,
defined based on customer requirements, are called "Customer
Required to-be-supported Subgraphs" (CRS) in our model and each
CRS must be covered by test cases, whereas feature combinations
which are not inside any CRS do not have to be tested, see Figure
3.

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan U. Knop et al.

Figure 3: Extended Feature Modell with Semantic Depen-
dencies and CRS

It is worth mentioning that although not depicted in this figure for
the sake of simplicity, CRSs can overlap, which means that
different CRSs may share the same features. For instance,
infrastructure features like job management are usually included in
multiple CRSs.

CRS play a crucial role in our solution strategy as they can
significantly reduce the number of test cases if utilized effectively.
A CRS still contains variability as the customer can choose any
feature within the CRS, but it also restricts variability by limiting
the choices to only those features that are part of the CRS. Finding
the right balance between these two extremes is crucial:
• A single CRS that covers the entire feature model would offer

the customer maximum variability, but would result in the
maximum number of test cases.

• Creating a unique CRS for each customer that only includes
their required features would result in a minimum number of
test cases, but would also result in a huge number of CRS and
long delivery cycles for each new customer.

By understanding customer needs, it is possible to create CRS that
are relatively small in terms of variability but meet the needs of
most customer groups. Furthermore, as we will show in the next
section, adding new CRS results in only a limited increase in
additional test cases.

4.3 Test Case Construction
Our test case construction process is based on automated analysis
of the feature model and combinatorial sampling but has some
unique features. Firstly, we take into account any level of
interaction between features by including all feature combinations
that are directly or indirectly linked through dependencies.
Additionally, we only consider combinations of features that

appear in the CRSs, ensuring that only configurations actually used
are tested. To achieve this, our approach involves several steps:
1. Computing all Customer Required to-be-supported

Subgraphs (CRS)s: First the CRSs and all contained features
are determined from the feature model.

2. Computing the Test Case Requirements (TCRs): These
need to adhere to the feature model (“buildability”) and take
into account all dependencies between features. More over,
only those TCRs that are part of a CRS are considered. The
exact process is explained below.

3. Filtering the TCRs: The input contains a list of TCRs to be
ignored based on knowledge of domain experts. These are
removed from the following steps.

4. Computing minimal amount of Quality Assurance Sets
(QAS): These are software configurations which together
contain all TCRs in the sense that all features in the TCR are
also included in the configuration and all features which are
explicitly marked as to be excluded in the TCR are not
included in the configuration. In this case study, we aim to
minimize the number of QASs required, in addition to
covering all TCRs as setting up each QAS incurs significant
costs.

The computation of the TCRs is based on the specific types of
dependencies which exist in the feature model.
1. Firstly, we identify the "base features", which are those

directly required by a CRS.
2. We then compute the connectivity component for each base

feature: Starting from each base feature we follow all
mandatory and optional dependencies to get the set of relevant
features for this base feature.

3. We then compute all “buildable” combinations of these
features using a SAT-solver. Buildable combinations must
adhere to the dependencies in the feature model and appear in
a CRS.

4. Next, we reduce these configurations by eliminating any
features that are only connected to the base feature through
other features that only appear negatively in the configuration.

5. Finally, we convert the resulting configurations into Boolean
formulas to obtain the Test Case Requirements (TCRs), which
form the basis for our manual test case construction.

We can illustrate the above steps using the following graph as an
example:

Balancing Variability and Costs in Software Product Lines:
An Experience Report in Safety-Critical Systems SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

Figure 4: TCR Computation Example

1. Base Features: Here the only base feature is GUI, as it is the

only feature directly required by the CRS.
2. Connectivity Components: GUI leads to JobViewer and

UserMgmt, while JobViewer leads to DataBase and
UserMgmt leads to MFA. Thus, the connectivity component
contains those five features and the connecting dependencies.
The set of relevant features is thus:
{ GUI, JobViewer, UserMgmt, DataBase, MFA }

3. Buildable combinations: The only relevant dependencies for
buildability are the mandatory ones between GUI and
JobViewer/UserMgmt. Therefore, there are no buildability
restrictions for DataBase and MFA. The buildable
combinations are thus:
• GUI & JobViewer & UserMgmt & DataBase & MFA
• GUI & JobViewer & UserMgmt & DataBase & -MFA
• GUI & JobViewer & UserMgmt & -DataBase & MFA
• GUI & JobViewer & UserMgmt & -DataBase & -MFA

 Since appearance in a CRS is also relevant, we need to
compute the configuration, which is the smallest buildable
configuration containing all needed features. Thus, the
configuration contains GUI, JobViewer and UserMgmt since
the dependencies to DataBase and MFA are not relevant for
buildability, as they are optional. The only buildable
combination that can appear in a CRS is then:
• GUI & JobViewer & UserMgmt & -DataBase & -MFA

4. Configuration reduction: Since semantic dependencies are
only interested in positive targets, -DataBase can be removed.
-MFA is relevant though, as it appears due to an optional
dependency.

5. Boolean formulas: We already expressed the configurations as
formulas, thus the resulting TCR is:
• GUI & JobViewer & UserMgmt & -MFA

5 Achievements and Future Work

5.1 Solution Roadmap
The implementation of our proposed solution strategy requires
several steps to be taken.
• Implement tooling to define and maintain the feature model

with the extensions outlined in Section 4.2.
• Implement tooling to specify CRSs and integrate CRSs into

the current configuration process and tooling.
• Implement the calculation of TCRs and QASs.
• Migrate current test cases and deployment sets used for testing

to reflect the computed TCRs and QAS.

This change affects a wide range of stakeholders in the
organization: software and product engineers responsible for the
feature model, testing managers and testing engineers responsible
for defining the final test cases based on TCRs, devops engineers
responsible for building deployment sets (testing and customer
related), product managers responsible for defining CRSs, sales
representative responsible for configuring customer deployments,
and maintenance staff responsible for supporting deployed
software configurations. Due to its impact, a staged approach is
required. Our proposed solution roadmap includes the following
phases:
• Phase 1 - Concept Validation: This phase involves validating

the concept of CRS by using the current deployment sets used
for testing. The feature model tooling is updated to
accommodate the new extensions and the TCR computation is
implemented. A pilot set of features is modeled, and
respective test cases are migrated based on the resulting TCRs.

• Phase 2 - Feature Support for a New Customer Group:
This phase involves extending the feature model with new
features required to support a new customer group. TCRs,
QASs, and customer-related deployment sets are constructed
based on the new approach.

• Phase 3 - Configuration and Build Process Adherence to
Extended Feature Model: This phase involves updating the
tooling used for configuring customer-related deployment sets
with additional validation checks to ensure that only
configurations that comply with the extended feature model
are deployed. This includes tooling to specify new CRSs and
evaluate the impact on testing efforts by computing metrics
such as the number of additional TCRs required. The tooling
for building deployment sets based on CRSs is also updated.

• Phase 4 - Full Rollout: This phase involves fully
implementing the new approach across all business lines,
including sales.

5.2 Implementation Status and Future Work
At the beginning of the project, the feature model was primarily
used to model the variability of the software platform. As of the

SPLC’23, August 28 – September 1, 2023, Tokyo, Japan U. Knop et al.

writing of this paper, phases 1 and 2 of the solution roadmap have
been successfully implemented. This includes an automatic
analysis of the feature model to determine TCRs and QASs. The
new testing strategy has been applied to the first deployment set
and an additional 11 offerings without a significant increase in
cross-module testing efforts. Phase 3 has been piloted already and
requires future work to complete. As described, this also includes
the use of the feature model for product configuration.

5.3 Results as of today
Figure 5 shows how the number of TCRs changes when features
are added. Each data point corresponds to a CRS that is to be
offered on the market, where the first data point belongs to the first
of the four originally migrated deployment sets, and each
subsequent data point corresponds to an additional offering that
was either not available on the market before or had to be tested
manually.

Figure 5: Number of Computed TCRs when Adding Features

The following observations can be made:
• Most CRSs do not result in a significant increase in the

number of required TCRs. For example, CRS 4 introduces 17
new features, but only results in 2 additional TCRs. This is
because the new features either have very few dependencies
on other CRSs or because dependencies only exist between
features that are already part of the previous CRSs, and thus,
are already covered by existing TCRs. It is a first success of
our approach that this redundancy is automatically detected.

• Between CRS 5 and 6, only two features are added (581
instead of 579), but they have several dependencies on already
existing features. This results in an increase in the required
TCRs from 331 to 444, or by 34%. This increase is significant
but makes sense in the context of expected feature
interactions. It demonstrates how transparency about the

degree of cross-module interactions can be gained through a
gradual addition of new features.

In conclusion, the proposed solution strategy demonstrates a
promising approach to reducing the number of necessary cross-
module test cases in the context of software platform development.
The successful implementation of the first two phases of our
solution roadmap, as well as the promising results shown in the
presented graph, demonstrate the feasibility and potential benefits
of our approach.

6 Limitations
We have presented a strategy for balancing the amount of
variability offered in software product lines with the cost of that
variability, particularly in the area of testing. To effectively
implement this strategy, a thorough understanding of customer
needs and the value that certain variability offers to customers is
necessary. This knowledge is crucial for defining Customer
Required to-be-supported Subgraphs (CRS), which play a key role
in limiting the number of test cases.

However, in many situations, this level of detail in customer
needs is lacking. Further research is needed to find ways to
construct CRS based on the feature model itself, for example by
identifying strongly connected subgraphs, and with limited
information about customer needs, such as features valued most by
customers. In addition, further research is required to identify
metrics to assess the value of CRS for customers, as well as the
costs of the additional variability introduced by them.

The expressiveness of the feature model plays a critical role in
reducing the number of test cases in software product line testing.
Our proposed solution has incorporated simple extensions to limit
variability in the feature model. However, further research is
necessary to explore the potential of creating even more expressive
feature models that are intuitive and manageable for software
engineers.

Additionally, there is potential for further extension of the
proposed solution, including the following:

• Deriving technical dependencies from code or IDE
analysis tools.

• Supporting different optimization boundary conditions
for the generation of Test Case Requirements (TCRs) and
Quality Assurance Sets (QASs), such as a minimal
number of QASs or minimal changes to TCRs and QASs
compared to an earlier version of the Software Product
Line.

These limitations should be considered when evaluating the
proposed solution and its potential for use in practical applications.

7 Conclusion and Outlook
This paper has discussed the challenges of testing SPLs and
proposed a new approach to address these challenges. Cost of
quality which is incurred by variability significantly adds to the

0

50

100

150

200

250

555 560 565 570 575 580 585 590 595

Nu
m

be
r o

f T
CR

s

Total Number of Features

Customer-Required to-be-supported Subgraph 1 2 3 4 5 6 7 8 9 10 11 12
Number of Included Features 559 559 559 526 526 296 268 268 44 43 13 2
Thereof New Features 1 1 17 1 2 1 1 2 1 1 2
Total Number of Features (without duplicates) 559 560 561 578 579 581 582 583 585 586 587 589
Number of TCRs 167 167 167 169 169 232 232 232 232 232 233 233

Balancing Variability and Costs in Software Product Lines:
An Experience Report in Safety-Critical Systems SPLC’23, August 28 – September 1, 2023, Tokyo, Japan

total cost of variability which limits to use of SPLs. Thus, ways are
needed to limit the number of test cases (for existing and newly
introduced feature interactions) without sacrificing quality and
important variability required by customers.
The main contributions of the paper to this research area are:
• We propose to utilize the feature model for not only capturing

variability but also for limiting it. We have outlined two
methods for this purpose: (1) using subgraphs of the feature
model to represent customer needs, and (2) introducing
additional dependency types to restrict unnecessary feature
combinations. This enhances the feature model and reduces
the number of necessary test cases by focusing only on
relevant feature interactions.

• The proposed approach combines combinatorial testing and
deployment-based testing and prioritizes test cases based on
risk or impact to the system using feature-use analysis.

In conclusion, the proposed approach provides a way to reduce the
number of test cases in SPLs without sacrificing quality and
important variability. Further research and implementation of this
approach could lead to significant benefits for the SPL community,
including increased variability in software deployments and
improved quality assurance.

Galindo et al. [2018] describe in which areas the automatic
analysis of feature models can be applied. This experience report
demonstrates how more and more benefits can be derived from a
feature model during the course of our solution roadmap while
extending the application of automated feature model analysis.

As an outlook, the proposed approach can act as an enabler for
several business challenges. More variability in the SPL allows for
more customer-specific deployments, thus reducing OTS-costs and
potential security risks introduced by not deeded modules.
Additionally, customer-specific installation packages can be
smaller and faster to update. This can help to reduce the number of
old software versions, that have to be supported in the field. Finally,
introducing additional variability is a prerequisite for feature-
subscription based pricing models.

REFERENCES
[1] David M. Cohen, Siddhartha. R. Dalal, Jesse Parelius and Gardner C. Patton,

"The combinatorial design approach to automatic test generation," in IEEE
Software, vol. 13, no. 5, pp. 83-88, Sept. 1996.
https://doi.org/10.1109/52.536462.

[2] Eduard Baranov and Axel Legay. "Baital: An adaptive weighted sampling
platform for configurable systems." Proceedings of the 2021 ACM SIGSOFT
23rd International Symposium on Software Testing and Analysis. ACM, 2021.
https://doi.org/10.1145/3503229.3547030.

[3] Emelie Engström and Per Runeson. "Software product line testing - A systematic
mapping study." Information and Software Technology 52, no. 12 (2010): 1240-
1249. https://doi.org/10.1016/j.infsof.2010.05.011.

[4] Fischer Ferreira, Gustavo Vale, João P. Diniz, and Eduardo Figueiredo.
"Evaluating T-wise testing strategies in a community-wide dataset of
configurable software systems." Journal of Systems and Software 166 (2021):
110990. https://doi.org/10.1016/j.jss.2021.110990.

[5] Thiago do Nascimento Ferreira, Silvia Regina Vergilio, and Marouane
Kessentini. "Applying Many-objective Algorithms to the Variability Test of

Software Product Lines." Proceedings of the 40th International Conference on
Software Engineering. ACM, 2018. https://doi.org/10.1145/3425174.3425211.

[6] José A. Galindo, David Benavides, Pablo Trinidad, Antonio-Manuel Gutiérrez-
Fernández, and Antonio Ruiz. "Automated analysis of feature models: Quo
vadis?" Journal of Software and Systems Modeling 17, no. 4 (2018): 1095-1113.
https://doi.org/10.1007/s00607-018-0646-1.

[7] José A. Galindo, Hamilton Turner, David Benavides, and Jules White. "Testing
variability-intensive systems using automated analysis: an application to
Android." Journal of Software and Systems Modeling 13, no. 4 (2014): 669-684.
https://doi.org/10.1007/s11219-014-9258-y.

[8] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. "Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-Wise Test Configurations for Software
Product Lines." IEEE Transactions on Software Engineering 40, no. 8 (2014):
779-794. https://doi.org/10.1109/TSE.2014.2327020.

[9] Pilsu Jung, Sungwon Kang, and Jihyun Lee (2020). Efficient Regression Testing
of Software Product Lines by Reducing Redundant Test Executions,
https://doi.org/10.3390/app10238686.

[10] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A.
Spencer Peterson (1990). Feature-oriented domain analysis (FODA) feasibility
study (No. CMU/SEI-90-TR-21). Software Engineering Institute.

[11] Yuqin Lee, Chuanyao Yang, Chongxiang Zhu, and Wenyun Zhao (2006). An
approach to managing feature dependencies for product releasing in software
product lines. In Reuse of Off-the-Shelf Components: 9th International
Conference on Software Reuse, ICSR 2006 Turin, Italy, June 12-15, 2006
Proceedings 9 (pp. 127-141). Springer Berlin Heidelberg.
https://doi.org/10.1007/11763864_10.

[12] Andreas Metzger and Klaus Pohl. "Software Product Line Engineering and
Variability Management: Achievements and Challenges." In Proceedings of the
8th International Conference on Software Product Line, pp. 1-8. ACM, 2014.
https://doi.org/10.1145/2593882.2593888.

[13] Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik (2011,
August). Pairwise feature-interaction testing for SPLs: potentials and limitations.
In Proceedings of the 15th International Software Product Line Conference,
Volume 2 (pp. 1-8). https://doi.org/10.1145/2019136.2019143.

[14] Klaus Pohl and Andreas Metzger. Software product line testing. Communications
of the ACM 49. 12 (2006): 78-81. https://doi.org/10.1145/1183236.1183271.

[15] Klaus Pohl, Günter Böckle, and Frank Linden. “Software product line
engineering: Foundations, principles, and techniques.” Springer Science &
Business Media, 2005. https://doi.org/10.1007/3-540-28901-1.

[16] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge,
Mohammad Reza Mousavi, and Ina Schaefer. "A classification of product
sampling for software product lines." Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM, 2018.
https://doi.org/10.1145/3233027.3233035.

[17] Yi Xiang, Xiaowei Yang, Han Huang, Zhengxin Huang, and Miqing Li. 2022.
"Sampling configurations from software product lines via probability-aware
diversification and SAT solving." Journal of Systems and Software, vol. 171, pp.
348-358. https://doi.org/10.1007/s10515-022-00348-8.

